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Introduction
Cervical Cancer (CC) is the fourth most common gynecological cancer and one of the most 

common causes of mortality in women in developing nations [1]. There were approximately 604,000 
new diagnosed cases and 342,000 deaths from CC worldwide in 2020 [2]. Almost all CC cases are 
linked to infection with high-risk Human Papillomaviruses (HPV), an extremely common virus 
transmitted through sexual contact [3].

HPV-related CC is a high spectrum disease with a gradual progression from pre-malignant 
condition to an aggressive disease, which begins in the cervix, and later spreads towards the lower 
uterine segment, vagina, para-cervical space, along with the broad and uterosacral ligaments [4]. For 
the CC development, tumor cells must invade the Extracellular Matrix (ECM) of the primary tumor 
[5]. For this process, Matrix Metalloproteinases (MMPs) play a deterministic role in tumor cells 
invasion by ECM cleavage [6]. MMPs, especially MMP-2 and MMP-9, are closely related to cancer 
cell growth, invasion, angiogenesis, and metastasis [7]. MMP-2 may enhance the invasive ability 
in cervical tumors cells by facilitating basement membrane and the ECM degradation [8]. MMP-9 
expression is up-regulated in tumor and stromal cells of both high-grade Cervical Intraepithelial 
Neoplasia (CIN) and CC [9]. It is associated with stromal invasion, FIGO stage, lymph node 
metastasis, and vascular invasion [10].

Tumor infiltrate may change the stromal compartment by modifying the ECM and creating 
an environment conducive to the invasion of altered cells [5,11]. These modifications can lead 
to changes in its architecture, regarding the distribution of collagens and other non-cellular 
components of ECM, which are also important factors for tumor development both in the initial 
stage and in metastatic sites [12].

Understanding how the Tumor Microenvironment (TME) and all its components interact is 
essential to improve the cancer knowledge, as well as to develop therapeutic strategies. As one of the 
main components of the TME, ECM has the function of ensuring the structural balance of the tissue, 
acting in an orderly manner and being able to regulate cellular functions, in addition to having 
different physical, biochemical and biomechanical functions. However, when ECM is disrupted and 
disorganized, cells begin to behave abnormally, leading to a failure in tissue homeostasis and organ 
function [5]. The current review summarizes how MMP may be regulated in TME and discuss the 
HPV role in MMP modulation in cervical carcinogenesis.

Extracelullar Matrix as an Actor for Cancer Development
ECM is composed of several biochemical components with different functions, such as: 

Collagen and elastin, which provide the structural framework and tissue elasticity; fibronectin and 
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laminin, related to the cell matrix adhesion; and polysaccharides and 
proteoglycans, which confer tissue resistance and are responsible for 
the exchange of nutrients [13]. These components constitute both 
the basement membrane and the interstitial matrix. The basement 
membrane is a specialized ECM, more compact and less porous, 
composed of type IV collagen, laminin, fibronectin, and proteins 
that connect collagen to other proteins. It is produced together by 
epithelial, endothelial and stromal cells and separates the epithelium 
or endothelium from the stroma. The interstitial matrix is rich in 
fibrillary collagens, proteoglycans, and glycoproteins, ensuring 
greater tissue resistance to traction, and is preferably composed of 
stromal cells [14].

Fibroblasts are characteristic cell types in the microenvironment 
playing a prominent role in the pathology of solid tumors [15]. 
They have been reported to influence the growth and radiation 
survival of CC cells [16]. Functional assays indicated that miR-
1323 was transferred by CAFs-secreted exosomes and miR-1323 
downregulation suppressed cell proliferation, migration, invasion, 
and increased cell radiosensitivity in cancer cell lineages, such as 
HeLa, SiHa, CasKi and C33A [17].

Besides, CAFs are the major sources of TGF-β1, an important 
cytokine that regulate of assembly and remodeling of EMC during 
cancer progression. TGF-β1 is the key growth factor involved in 
driving Epithelial-Mesenchymal Transition (EMT), a process which 
an epithelial cell alters its phenotype to that of a mesenchymal cell 
in response to external stressors or specific growth factors [18,19]. It 
involves the down regulation of epithelial markers as cytokeratin and 
E-cadherin, and the up regulation of mesenchymal markers including 
vimentin, fibronectin and α-Smooth Muscle Actin (α-SMA) [20]. 
Cancer cells have plasticity and can continuously adapt to the 
constantly changing TME, and this process is mediated by EMT [21]. 
In some cancer cells in primary tumors, epithelial cells lose their 
characteristic polarity and adherence because of EMT and attain a 
mesenchymal phenotype that enables invasion and metastasis, and 
these transformed cells exhibit molecular alterations, as confirmed 
by reduced E-cadherin expression and increased N-cadherin and 
vimentin expression [22].

EMT is considered the pre-step of cancer cell metastasis. 
Meanwhile, studies have been performed in an attempt to reverse 
the EMT process and inhibits the CC progression. The Enhancer of 
Zeste Homolog 2 (EZH2) is a positive upstream regulator of the EMT 
program. It may combine with the CDH1 (encoding E-cadherin) 
promoter to decrease the expression of E-cadherin and promote 
the metastasis and invasion of gastric cancer cells [23]. Chen and 
collaborators [24] demonstrated that miR-138 suppressed tumor 
progression by targeting EZH2 in CC and uncovered the role of DNA 
methylation in the miR-138 promoter in its downregulation. Upon 
miR-138 overexpression, cell proliferation, metastasis, invasion and 
EMT were suppressed. These findings demonstrated the potential of 
miR-138 to predict disease metastasis and/or function as a therapeutic 
target in CC.

In addition to miRNAs, several long non-coding RNA (lncRNA) 
impact CC advancement via modulating the EMT process. lncRNAs 
affects the apoptosis, invasion and metastasis of tumor cells and 
have a significant influence on tumor development [25]. The altered 
lncRNAs in tumors are expected to be used as diagnostic markers in 
multiple tumors [26]. Studies suggested that lncRNA may be crucial 
regulator of CC progression. For example, lncRNA FBXL19-AS1 

promotes the proliferation and metastasis of CC cells by sponging 
miR-193a-5p and up-regulating Collagen type I Alpha 1 (COL1A1), 
a fibril-forming collagen found in most connective tissues and is 
abundant in bone, cornea, dermis and tendon [27]. LncRNA LIPE-
AS1 was over-expressed in CC tissues, related to tumor volume 
and declined survival rate. In vitro, LIPE-AS1 accelerated CC cell 
proliferation, migration and EMT, inhibited apoptosis [28].

Structure and Function of MMPs
The ECM degradation, covering all its components, is dependent 

on the action of proteolytic enzymes [29], such as MMPs, also called 
Matrixins. MMPs belong to a family of zinc-dependent enzymes, 
classified according to their structure and substrate specificity, as 
collagenases, gelatinases, stromelysins, Matrilysins and Membrane-
Bound Metalloproteinases (MT-MMP) [30]. Currently, 24 MMPs are 
known, of which 23 in humans [29].

MMP family members are homologous in structure, containing 
five typical distinct functional domains: The signal peptide, 
N-terminal, with variable length, responsible for the MMPs secretion; 
the pro-peptide (~80 aa), which has a cysteine switch, which chelates 
the active site of Zn2+, ensuring the latent form of MMP (pro-MMP); 
the catalytic domain (~170 aa), which contains the Zn2+ binding motif, 
two Zn2+ ions, and Sn' pockets, which confer substrate specificity, 
in addition to Ca2+ ions, providing stability and thus, responsible 
for proteolytic activity; a variable length linker (~15-65 aa), which 
links the catalytic domain to the hemopexin-like domain, also 
called the hinge region; and the hemopexin-like domain (~200 aa), 
C-terminal, which together with the S1' pocket are determinant for 
substrate specificity, being essential for the recognition and catalytic 
degradation of fibrillar collagen [29,31].

However, some MMPs differ with respect to these structures. 
For example, gelatinases have three type II fibronectin repeats in the 
catalytic domain; matrilysins lack the hinge region and hemopexin-
like domain; secreted MMPs (MMP-11, -21 and -28) have a Furin-
like proprotein convertase recognition sequence in the C-terminal 
chain of the propeptide [31]; and Membrane-Type MMPs (MT-
MMPs) have MT-MMPs can be linked to the membrane in two ways: 
Through the transmembrane domain, followed by a short cytoplasmic 
tail, or anchored to the GPI [32].

It was seen that different MMPs have specific characteristics in 
their structure, differentiating them from the typical structure of an 
MMP (Figure 1). The S1' site, a hydrophobic pocket of well-defined 
depth, is the main difference between MMPs, which is a determining 
factor for the specific interaction with the substrate [33].

MMPs are classified as the main responsible for the renewal of 
the ECM through the proteolytic degradation of its components [34]. 
Each type of MMP has a different biological function: Collagenases 
(MMP-1, -8, -13 and -18) participate in the degradation of fibrillar 
collagen, which is essential in bones and ligaments; gelatinases 
(MMP-2 and -9) are involved in angiogenesis and neurogenesis, 
being able to modify the molecules of the basal lamina, leading to cell 
death; stromelysins (MMP-3, -10 and -11) degrade ECM segments; 

Figure 1: Typical structure of an MMP [31].
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matrilysins (MMP-7 and -26) cleave cell surface molecules and digest 
ECM components; and Membrane Metalloproteinases (MT-MMPs) 
are able to activate some proteases and cell surface components [34].

Because MMPs disintegrate physical tissue barriers and contribute 
to the migration of tumor cells, initially these enzymes were known 
to initiate the metastasis process [35]. However, MMPs, in fact, may 
participate in all stages of tumor progression, since they are capable 
of modifying signaling pathways, regulating cytokines involved in 
tumor immune response, and inducing angiogenesis [36]. These roles 
will be further discussed in the next topics.

Cell surface receptors act in the conversion of extracellular 
messages into intracellular signals, and the proteolysis of these 
receptors can affect their activation, half-life and signal transduction 
[37]. MMP-1, for example, is capable of cleaving PAR1 (Protease-
Activated Receptor), which is part of the family of G Protein-Coupled 
Receptors (GPCRs), inducing signaling, changes in the morphology 
of the p38 protein, in addition to activation by an alternative pathway 
and phosphorylation of this protein [38]. MMP-7 is also capable 
of inducing immune evasion mechanisms, through the cleavage of 
FasL and CD95 (Fas) [39,40]. This was observed by Strand et al. [41] 
who showed that MMP-7 cleaved the recombinant CD95 protein 
on the surface of colon tumor cells (HT-29), preventing apoptosis, 
whereas treatment with a broad-ranging MMP inhibitor (TIMP) 
spectrum, increased cellular sensitivity to CD95-mediated apoptosis. 
It was also seen that MT1-MMP cleaves CD44, a transmembrane 
receptor molecule that helps in cell migration inducing changes 
in the ECM, being, therefore, intimately involved in the processes 
of tumor invasion and migration [41]. Kajita et al. [42] observed 
the co-expression of MT1-MMP and CD44 in human breast 
carcinoma cells, generating 3 different fragments of CD44. Zarrabi 
et al. also demonstrated that one of the blades of the helix of the 
hemopexin domain of MT1-MMP interacts with CD44 leading to 
phosphorylation of EGFR, and this interaction is blocked by peptides 
that mimic the helix of the hemopexin domain of MT1-MMP, 
resulting on decreasing cancer cell metastasis in a murine model of 
breast cancer. In contrast, studies have shown that Death Receptor 6 
(DR6), widely expressed on the surface of prostate and breast cancer 
tumor cells, is a substrate of MT1-MMP [43]. Cleavage of the Death 
Receptor 6 (DR6) ectodomain by this metalloproteinase shifted T 
cell differentiation away from Th1, induced monocyte cell death, 
and affected cytokine profiles of immature dendritic cells [44,45]. 
The interaction between DR6 and MT1-MMP suggests an increase 
in innate and adaptive immune response in antitumor therapy [37].

Studies have also shown that MMPs are important regulators of 
immune cell recruitment in inflammatory processes. Some MMPs 
can cleave chemokines, altering their function and resulting in the 
formation of a chemical gradient that directs cell migration [46]. 
It was seen that MT6-MMP is able to cleave about 14 chemokines 
that are related to the recruitment of macrophages and monocytes, 
such as CXCL2 and CXCL5, during an inflammatory process [37,46], 
increasing its chemotactic activity [37,46]. Chemokines CCL15 
and CCL23, when cleaved by MMPs, increase their binding to 
Glycosaminoglycans (GAGs), present in the ECM and on the surface 
of endothelial cells [47] and induce chemotaxis, facilitating the 
migration of inflammatory cells in tissues. In contrast, MMP-2 cleaves 
CCL7, preventing the recruitment of macrophages and lymphocytes, 
thus decreasing the immune response [48]. McQuibban et al. [48] 
demonstrated that mice treated with cleaved CCL-7, compared to 

whole CCL-7, experienced a decrease in mononuclear inflammatory 
cell infiltration.

MMPs can both promote inflammation and act in anti-
inflammatory regulation, through the processing of some cytokines, 
such as TNF-α, IL-1β and TGF-β. It has been shown that multiple 
MMPs (-1, -2, -3, -7, -9, -12, -14 and -17) are able to cleave active 
TNF-α at the cell surface, reinforcing their role as signaling influencers 
cellular [46]. Furthermore, MMPs can regulate IL-1β activity by 
cleaving soluble type II decoy receptor from IL-1 (sIL-1R II) [49]. 
MMPs2, -3 and -9 cleave IL-1β to reach a biologically mature form 
[50]. These same MMPs, plus MT1-MMP, also showed the ability to 
cleave the latent TGF-β complex, separating it from the cell surface, 
releasing the mature TGF-β [51]; moreover, MMPs can also trigger 
the release of TGF-β through the degradation of decorin, a collagen-
associated proteoglycan that acts as a TGF-β depot in the ECM [52]. 
Briefly, MMPs are capable of triggering a signaling cascade in various 
types of systems and tissues; however, this mechanism needs to be 
better elucidated with regard to its in vivo effects and its association 
with the disease [37].

These data show us that MMPs have many other substrates 
in addition to those related to the ECM, having a wide range of 
functions in several cellular processes, both in normal conditions and 
in pathologies, mainly in tumorigenesis.

MMPs Modulators
In healthy tissues, under normal physiological conditions, 

the proteolytic activity of MMPs is low, and their expression is 
transcriptionally regulated by inflammatory cytokines, such as Tumor 
Necrosis Factor (TNF-α), growth factors, such as Epidermal Growth 
Factor (EGF) and Transforming Growth Factor (TGF-β), hormones, 
cell-cell and cell-matrix interaction [53]. Most members of the MMP 
family have a cis element in their promoter region, which allows for 
strong control of their expression by cells, thus allowing them to be 
co-expressed and co-repressed in response to the stimuli [54]. In the 
tumor microenvironment, the pro-inflammatory cytokine TNF-α 
induces increased expression of MMP-2, -3, -7 and -9, facilitating the 
invasion of malignant cells [55,56]. EGF induces MMP-1 expression 
in skin fibroblasts; when it binds to its EGR-1 receptor, and it is able to 
suppress the transcriptional MMP-9 activation in stromal cells [57]. 
PDGF (Platelet-Derived Growth Factor) leads to increased MMP-
1 expression and when in conjunction with TGF-β, it increases the 
MMP-3 and Tissue Metalloproteinase inhibitor (TIMP-1) expression 
[58]. Vascular Endothelial Growth Factor (VEGF) and Fibroblast 
Growth Factor (FGF-2) act as an angiogenic factors inducing MMP 
expression and facilitating metastasis [59].

Some proteases may be regulated post-transcriptionally. MMP 
transcripts have specific sequences in their 5'-UTR and 3'-UTR 
regions, which are targets of proteins that can bind and destabilize 
the mRNA [32,60]. An example of this post-transcriptional 
modulation is through miRNAs, which are small sequences of non-
coding RNA that regulate gene expression, repressing translation or 
by degradation of their mRNA targets. miR21, which leads to the 
suppression of the Phosphatase and Tensin Homologue (PTEN), 
a tumor suppressor, induced a strong regulation of MMP-2, in an 
experimental model of myocardial infarction in mice [61]. This 
miRNA was also capable of negatively regulate the TIMP-3, and 
consequently leading to the activation of MMPs 2 and 9, as clinically 
relevant integral components of STAT3 signaling and are responsible 
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for maintaining activated state of STAT3 in HPV-infected cells 
during cervical carcinogenesis [62]. Furthermore, MMP-9 expression 
can be regulated by proteins like Siglec-15, a protein found in 
Tumor-Infiltrating Macrophages (TIMs). Recently, studies reported 
that Siglec-15 has immunosuppressive function [63] and related the 
migration of tumor cells in liver cancer and osteosarcomas [64,65]. 
In osteosarcoma cells suppression of Siglec-15 leaded to a decrease 
in the MMP-9 expression and in the opposite ways, when Siglec-15 
protein was expressed, the MMP-9 expression was upregulated [64].

Experimental studies have already shown that MMP expression is 
transient after exposure to an external stimulus, leading to the belief 
that the genes of most of these proteases are inducible. However, 
in cancer cases, tumor cells start to express them constitutively 
at high levels, indicating that other types of mechanisms may be 
collaborating for the regulation of MMPs. In cases of methylation, 
the promoter region of several MMP genes have CpG islands that can 
be methylated, leading to gene silencing [60,66].

MMPs are secreted in their inactive form as pro-MMP (zymogen) 
and are activated in the extracellular space, with the exception of MT-
MMPs, MMP-11, -23 and -28, which are activated in the intracellular 
space by a convertase protein, such as Furin [67]. Once mature, the 
MMPs activity is regulated by general protease inhibitors, such as α2-
macroglobulin in plasma and blood fluids and TIMPs [68]; in addition 
to reactive oxygen, hypochlorous acid originating from leukocytes 
during the inflammatory process, MMPs and other proteases [68].

The active MMPs function is controlled by endogenous inhibitors, 
which include serum globulins and the tissue TIMPs [69,70]. They 
belong to a family of four homologous members (TIMP-1, -2, -3 
and -4) and may be expressed constitutively in variety of cell types, 
induced or tissue-specific, being regulated at the transcriptional level 
by cytokines and growth factors [71]. The first evidence that these 
inhibitors play an important role in the ECM degradation, arose from 
the observation that TIMPs are capable of inhibiting several MMPs in 
vitro and the increased TIMP expression was associated with matrix 
accumulation [72]. All TIMPs are capable of inhibiting all MMPs 
with variations in their effectiveness [68]. TIMP-1 is a weak inhibitor 
of MT1-MMP, MT3-MMP, MT5-MMP and MMP-19, while TIMP-
2 is the only one that, in addition to inhibiting, is able to activate 
pro-MMP-2, through interaction with MT1-MMP [68], where pro-
MMP-2 is cleaved, and its active form released. Based on this process, 
it was suggested that MT1-MMP should act as a surface receptor 
by which TIMP-2 could influence cell growth; however, there is no 
evidence that this same mechanism can lead to suppression of the 
proliferation of endothelial cells [73]. TIMP-3 can promote apoptosis 
in tumor cell lines and smooth muscle cells, however, involving the 
modulation of MMP activity [71]. They have anti-angiogenic activity 
when acting as a Vascular Endothelial Growth Factor (VEGFR)-2 
antagonist, independently of MMP inhibition [74]. TIMP-4, although 
mechanisms have not been described, it is suggested to increase or 
inhibit the growth of tumor grafts in vivo [75].

The Role of MMPs in Cancer
Tumor invasion process is orchestrated by a large set of cells 

including the tumor cells themselves, the adjacent stromal cells 
and the intratumor inflammatory cells, and it is believed that they 
are all capable of expressing a variety of MMPs [76]. However, non-
malignant stromal cells are the main sources of MMP production, as 
they are induced by tumor cells through the secretion of cytokines 
and growth factors [77].

During a carcinogenic process, MMPs are able to degrade 
adhesion molecules that mediate cell-cell or cell-ECM interaction 
(e.g., cadherins and integrins), causing the tumor cell to separate 
from adjacent cells and ECM. In addition, they degrade the basement 
membrane and ECM facilitating the locomotion and invasion of 
tumor cells, allowing them to reach and penetrate in blood or lymph 
vessels, leading to metastasis [78]. During this process, MMPs can 
modulate the bioavailability of growth factors and function/activation 
of surface receptors, release precursors to some growth factors linked 
to the cell membrane, activate signaling pathways to promote survival 
and degrade apoptosis mediators or mediators. Antitumor immunity, 
thus supporting tumor cells and promoting cell proliferation [78,79].

In angiogenesis, a fundamental stage in tumor development, 
MMPs play an important role, since they can degrade the basement 
membrane of blood vessels and recruit precursors of bone marrow 
endothelial cells to newly formed vessels [80]. MMP-9, one of the 
main regulators of this process, can both activate pro-angiogenic 
factors, such as VEGF, FGF and TGF-β, and promote the migration 
of endothelial cells [81], as well as generate angiogenesis inhibitors, 
such as endostatin and tumstatin, through proteolysis of the ECM 
and basement membrane of the vessels [79].

Another mechanism that contributes to tumor expansion is the 
escape of the immune response. MMPs produced by tumor cells can 
interfere with the chemotaxis of inflammatory cells to tissues, by 
cleaving some chemokines [48]. CCL/Monocyte Chemoattractant 
Protein (MCP) family of chemokines are cleaved by MMPs, which 
specifically renders them into non-activating receptor antagonists 
with inflammation-dampening effects [82]. In the melanoma model, 
the proteolytic cleavage of CCL8 by MMP-1 and MMP-3 may inhibit 
the antitumor capacity of this chemokine, demonstrating that the 
chemokine proteolytic cleavage can strongly affect a clinically relevant 
scenario of tumor development [83].

Several studies have focused on the association of MMPs with the 
development of various types of cancer. The expression of MMP-9, for 
example, was positively correlated with the expression of VEGFR-1 in 
patients with Hepatocellular Carcinoma (HCC), where they exhibited 
the worst clinical outcome of the disease, suggesting that MMP-9 as 
a prognostic marker of HCC [84]. In oral squamous cell carcinoma, 
Shrestha et al. [85], observed a positive correlation between MMP-
2 and TIMP-2 with the degree, stage and metastatic capacity of the 
tumor, the highest expression of MMP-2 being associated with a 
reduced survival in cancer patients. The authors suggested that the 
expression of this enzyme may be an intrinsic biological characteristic 
of tumors and may indicate aggressive tumor behavior, regardless of 
the stage, while TIMP-2 demonstrated a relationship with the stage of 
the disease. Chang et al. [86] observed in patients with gastric cancer, 
an increase in serum levels of MMP-3, -7 and -11, and MMP-9, -12 
and -21 in a tumor sample, and associated with the reduced survival 
of these patients. Likewise, a study evaluating the immunoexpression 
of MMP-9 demonstrated a strong association between the presence of 
this enzyme in patients with breast cancer metastasis, who had died 
[87].

The Role of MMPs in Cervical Cancer
CC is a major health problem due to its late diagnosis and 

poor prognosis, especially among women in underdeveloped 
countries worldwide. The initial establishment of cervical lesions 
and their progression to CC are closely associated with HPV E6 
and E7 oncogenes, which are constitutively expressed leading to 
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tumorigenesis. The genome organization and protein structure 
of E6 and E7 have been discussed followed by their mechanism to 
establish the six major cancer hallmarks in cervical tissues for tumor 
propagation.

In cervical carcinogenesis, invasion process begins with the 
disruption of intracellular junctions of carcinoma cells in situ and 
their adherence to the basement membrane. The E6 proteins from 
high-risk HPV are characterized by the presence of a PDZ (PSD95/
Dlg/ZO-1) binding motif in their extreme carboxy termini, through 
which they interact with several cellular PDZ domain-containing 
substrates leading a loss of tight-junction integrity [88]. This 
interaction with E6 protein results in the proteasomal degradation 
and/or mislocalization of the PDZ proteins, hence disrupting cell 
polarity, a common characteristic of malignant cells [89].

Cellular invasion takes place when tumor cells start to cross-talk 
with stromal cells, leading to cooperative enzymatic degradation of 
the Basement Membrane (BM) and the subjacent ECM, which allows 
the tumor to access vascularization to grow and metastasize [90]. The 
BM and ECM contain several proteins, such as collagens, fibronectin, 
and laminin [91], and so, there are several proteolytic enzymes that 
are involved in invasion [92], including MMPs, that are essential in 
the ECM degradation process and also promote cellular migration, 
regulate growth factors and cytokines, influence apoptosis and 
collaborate in neovascularization.

In addition to destabilizing the junction’s integrity, E6 and E7 
HPV oncoproteins can destabilize the interaction of MMPs with 
their regulators, affecting cell migration and invasion [93]. In vitro 
studies demonstrate that C33a (HPV-negative keratinocytes) cell 
lines transfected with E6 and E7 showed greater expression of MMP-
9, MMP-2 and MT1-MMP, while the co-expression of E6/E7 led 
decrease in TIMP-2. However, their silencing led to a decrease in 
the levels of these MMPs [93]. Likewise, positive HPV16 cell lines 
showed high expression of MMP-2, MMP-9 and MT1-MMP, and 
once E6 and E7 were silenced, there was a decrease in both protein 
and mRNA levels of these MMPs [93]. In all studies, the silencing 
of these oncoproteins led to a reduction in the migratory capacity 
of these cells. A proteomic analysis study of the secretome of CC 
lines C33A (HPV negative), HeLa (HPV-18+) and SiHa (HPV-16+) 
demonstrated that TIMPs were over-regulated in these cell lineages 
when compared to a normal HCKT1 cell line, where MMPs-2 and -9 
were not identified in its secretome. In addition, through zymography 
analysis confirmed the increased TIMPs regulation, leading to 
a decrease or absence of catalytic activity of MMP-2 and -9 in the 
secretome of these cell lines [94].

In the clinical context, studies have demonstrated the association 
of the MMP expression with the development and stage of CC. Some 
groups highlighted the involvement of MMPs-2, -9 and MT1-MMP 
in the development and progression of cervical tumors based on 
increased mRNA expression and protein in CIN 2/3 and CC [95]. 
In CIN 1 or normal cervical tissue the presence of these MMPs 
was decreased or absent [96]. In addition, these MMPs were also 
correlated with angiogenesis during the evolution from a high-grade 
lesion to cancer, and with the vascular density of tumors, and can be 
considered a good prognostic marker [97].

Guo et al. [98] observed an association between increased 
expression of MMP-7 and -9 with lymph node tumor metastasis in 
patients with early CC, suggesting that there was a positive correlation 

between these MMPs and the invasive potential of cervical tumors. 
The same was observed by Wu and collaborators [99], when they 
reported an increase in MMP-7 mRNA, as well as the protein, in CC 
tissues and metastatic lymph node tumors. These results suggested 
that these enzymes may contribute to the increase in the invasive 
potential of the tumor.

Furtado et al. [100] analyzed the presence of TIMP-2 methylation 
in Low and High Squamous Intraepithelial Lesions (LSIL and HSIL, 
respectively), invasive cancer and normal cervical samples, and 
their relationship with the presence of HPV DNA. Methylation was 
frequently detected in the lesion and CC groups compared to normal 
control samples. Although they did not find a statistically significant 
relationship between TIMP-2 methylation and the presence of 
HPV DNA, this association was more frequent in patients with an 
unfavorable clinical outcome. The group suggests that TIMP-2 
methylation inactivates certain regions of the gene, reducing protein 
expression and impairing its role in tumor suppression, which may 
infer that TIMP-2 methylation may be a prognostic biomarker for 
unfavorable lesion evolution.

Understanding the complex mechanism of cervical carcinogenesis 
is essential to search for biomarkers that can be used as prognostics 
tools, and thus improve the clinical follow up and early identification 
and treatment of selected patients. The topics discussed in this review 
are essential for the understanding of the complex mechanisms 
involved in HPV-related cervical lesions and the action of MMPs in 
the tumor microenvironment.
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